Search results
Results from the WOW.Com Content Network
Liquid metal embrittlement (also known as LME and liquid metal induced embrittlement) is a phenomenon of practical importance, where certain ductile metals experience drastic loss in tensile ductility or undergo brittle fracture when exposed to specific liquid metals.
Adsorption embrittlement is the embrittlement caused by wetting. Liquid metal embrittlement (LME) is the embrittlement caused by liquid metals. Metal-induced embrittlement (MIE) is the embrittlement caused by diffusion of atoms of metal, either solid or liquid, into the material. For example, cadmium coating on high-strength steel, which was ...
Metal-induced embrittlement (MIE) is the embrittlement caused by diffusion of metal, either solid or liquid, into the base material. Metal induced embrittlement occurs when metals are in contact with low-melting point metals while under tensile stress. The embrittler can be either solid or liquid (liquid metal embrittlement).
Corrosion during service in moist environments generates hydrogen, part of which may enter the metal as atomic hydrogen (H •) and cause embrittlement. Presence of a tensile stress, either inherent or externally applied, is necessary for metals to be damaged. As in the case of stress corrosion cracking, hydrogen embrittlement may also lead to ...
However, duplex stainless steel can be susceptible to a phenomenon known as 475 °C (887 °F) embrittlement or duplex stainless steel age hardening, which is a type of aging process that causes loss of plasticity in duplex stainless steel when it is heated in the range of 250 to 550 °C (480 to 1,020 °F).
Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can permeate solid metals.
For example, using stainless steel instead of carbon steel in a marine environment can reduce the likelihood of SCC. [7] Protective Coatings: Applying a protective coating or barrier can help prevent corrosive substances from coming into contact with the metal surface, thus reducing the likelihood of SCC.
Corrosion is fuelled by the dissolution of metals present in alloys (e.g., Ni, Cr, released from stainless steel) in the liquid metal coolant (formation of liquid amalgam with precipitation of the dissolved metals at cold points) and the liquid metal embrittlement (LME) of the fuel claddings and structural materials of the reactor internals.