enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron scattering - Wikipedia

    en.wikipedia.org/wiki/Neutron_scattering

    Neutron moderators are used to produce thermal neutrons, which have kinetic energies below 1 eV (T < 500K). [1] Thermal neutrons are used to maintain a nuclear chain reaction in a nuclear reactor, and as a research tool in neutron scattering experiments and other applications of neutron science (see below). The remainder of this article ...

  3. Thermal-neutron reactor - Wikipedia

    en.wikipedia.org/wiki/Thermal-neutron_reactor

    Neutrons are uncharged, this allows them to penetrate deep in the target and close to the nuclei, thus scattering neutrons by nuclear forces, some nuclides are scattered large. [1] The nuclear cross section of uranium-235 for slow thermal neutrons is about 1000 barns, while for fast neutrons it is in the order of 1 barn. [2]

  4. Neutron temperature - Wikipedia

    en.wikipedia.org/wiki/Neutron_temperature

    A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (about 4.0×10 −21 J or 2.4 MJ/kg, hence a speed of 2.19 km/s), which is the energy corresponding to the most probable speed at a temperature of 290 K (17 °C or 62 °F), the mode of the Maxwell–Boltzmann distribution for this temperature, E peak = k T.

  5. Neutron diffraction - Wikipedia

    en.wikipedia.org/wiki/Neutron_diffraction

    Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material.

  6. Neutron spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Neutron_spectroscopy

    The wavelength, λ, is on the order of a few angstroms (Å). Because a thermal neutron cannot “see” the internal structure of a nucleus, the scattering is considered to be isotropic. This interaction is thus characterized by a scattering length of b, which is on the same order of the size of a nucleus (10-15 m). Therefore, nuclear ...

  7. Neutron moderator - Wikipedia

    en.wikipedia.org/wiki/Neutron_moderator

    These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus. Water (sometimes called "light water" in this context) is the most commonly used moderator (roughly 75% of the world's reactors).

  8. Debye–Waller factor - Wikipedia

    en.wikipedia.org/wiki/Debye–Waller_factor

    The Debye–Waller factor (DWF), named after Peter Debye and Ivar Waller, is used in condensed matter physics to describe the attenuation of x-ray scattering or coherent neutron scattering caused by thermal motion. [1] [2] It is also called the B factor, atomic B factor, or temperature factor.

  9. High Flux Isotope Reactor - Wikipedia

    en.wikipedia.org/wiki/High_Flux_Isotope_Reactor

    The HB-2 thermal neutron beam tube is situated radially relative to the reactor core, pointed directly at the fuel. Two beryllium inserts are installed in the spherical tip of the beam tube to maximize thermal neutron flux within the critical acceptance angle of the neutron scattering experiment equipment.