enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron temperature - Wikipedia

    en.wikipedia.org/wiki/Neutron_temperature

    A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (about 4.0×10 −21 J or 2.4 MJ/kg, hence a speed of 2.19 km/s), which is the energy corresponding to the most probable speed at a temperature of 290 K (17 °C or 62 °F), the mode of the Maxwell–Boltzmann distribution for this temperature, E peak = k T.

  3. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    In many substances, thermal neutron reactions show a much larger effective cross-section than reactions involving faster neutrons, and thermal neutrons can therefore be absorbed more readily (i.e., with higher probability) by any atomic nuclei that they collide with, creating a heavier – and often unstable – isotope of the chemical element ...

  4. Neutron scattering - Wikipedia

    en.wikipedia.org/wiki/Neutron_scattering

    Neutron moderators are used to produce thermal neutrons, which have kinetic energies below 1 eV (T < 500K). [1] Thermal neutrons are used to maintain a nuclear chain reaction in a nuclear reactor, and as a research tool in neutron scattering experiments and other applications of neutron science (see below). The remainder of this article ...

  5. Thermalisation - Wikipedia

    en.wikipedia.org/wiki/Thermalisation

    Thermalisation, thermal equilibrium, and temperature are therefore important fundamental concepts within statistical physics, statistical mechanics, and thermodynamics; all of which are a basis for many other specific fields of scientific understanding and engineering application. Examples of thermalisation include:

  6. Neutron moderator - Wikipedia

    en.wikipedia.org/wiki/Neutron_moderator

    The free neutrons are emitted with a kinetic energy of ~2 MeV each. Because more free neutrons are released from a uranium fission event than thermal neutrons are required to initiate the event, the reaction can become a self-sustaining nuclear chain reaction under controlled conditions, thus liberating a tremendous amount of energy.

  7. High Flux Isotope Reactor - Wikipedia

    en.wikipedia.org/wiki/High_Flux_Isotope_Reactor

    The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than 500 researchers each year for neutron scattering research into the fundamental properties of condensed matter ...

  8. Trump and giveaways: What Musk spent $270M on during ... - AOL

    www.aol.com/trump-giveaways-musk-spent-270m...

    Tesla and X CEO Elon Musk spent over a quarter of a billion dollars to help get President-elect Donald Trump back in the White House, according to newly released campaign finance records. The ...

  9. Neutron transport - Wikipedia

    en.wikipedia.org/wiki/Neutron_transport

    The number of neutrons produced per fission is multiplicatively modified by the dominant eigenvalue. The resulting value of this eigenvalue reflects the time dependence of the neutron density in a multiplying medium. k eff < 1, subcritical: the neutron density is decreasing as time passes; k eff = 1, critical: the neutron density remains ...