enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Physical vapor deposition - Wikipedia

    en.wikipedia.org/wiki/Physical_vapor_deposition

    Sputter deposition: a glow plasma discharge (usually localized around the "target" by a magnet) bombards the material sputtering some away as a vapor for subsequent deposition. Pulsed electron deposition: a highly energetic pulsed electron beam ablates material from the target generating a plasma stream under nonequilibrium conditions.

  3. Electron-beam physical vapor deposition - Wikipedia

    en.wikipedia.org/wiki/Electron-beam_physical...

    The PVD process can be carried out at lower deposition temperatures and without corrosive products, but deposition rates are typically lower. Electron-beam physical vapor deposition, however, yields a high deposition rate from 0.1 to 100 μm/min at relatively low substrate temperatures, with very high material utilization efficiency. The ...

  4. List of metal-organic chemical vapour deposition precursors

    en.wikipedia.org/wiki/List_of_metal-organic...

    In chemistry, a precursor is a compound that contributes in a chemical reaction and produces another compound, or a chemical substance that gives rise to another more significant chemical product. Since several years metal-organic compounds are widely used as molecular precursors for the chemical vapor deposition process (MOCVD).

  5. Electromagnetically enhanced Physical Vapor Deposition

    en.wikipedia.org/wiki/Electromagnetically...

    Thin-film deposition is the overarching technology from which PVD, CVD, ALD, EBPVD, and EPVD are derived, each employing different methods to achieve specific coating characteristics. PVD (Physical Vapor Deposition) involves the physical vaporization of material in a vacuum to form a thin film, while EBPVD (Electron Beam Physical Vapor ...

  6. Chemical vapor deposition - Wikipedia

    en.wikipedia.org/wiki/Chemical_vapor_deposition

    The use of catalyst is viable in changing the physical process of graphene production. Notable examples include iron nanoparticles, nickel foam, and gallium vapor. These catalysts can either be used in situ during graphene buildup, [23] [27] or situated at some distance away at the deposition area. [28]

  7. Electron beam-induced deposition - Wikipedia

    en.wikipedia.org/wiki/Electron_beam-induced...

    Electron-beam-induced deposition (EBID) is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a scanning electron microscope , which results in high spatial accuracy (potentially below one nanometer) and the possibility ...

  8. Self-assembled monolayer - Wikipedia

    en.wikipedia.org/wiki/Self-assembled_monolayer

    Metal substrates for use in SAMs can be produced through physical vapor deposition techniques, electrodeposition or electroless deposition. [1] Thiol or selenium SAMs produced by adsorption from solution are typically made by immersing a substrate into a dilute solution of alkane thiol in ethanol, though many different solvents can be used [1] besides use of pure liquids. [16]

  9. Titanium nitride - Wikipedia

    en.wikipedia.org/wiki/Titanium_nitride

    Titanium nitride (TiN; sometimes known as tinite) is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface properties.