enow.com Web Search

  1. Ads

    related to: shapes that will tessellate things worksheet answers grade
  2. It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

    • Worksheet Generator

      Use our worksheet generator to make

      your own personalized puzzles.

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  3. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]

  4. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  5. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron is a space-filling polyhedron, meaning it can be applied to tessellate three-dimensional space: it can be stacked to fill a space, much like hexagons fill a plane. It is a parallelohedron because it can be space-filling a honeycomb in which all of its copies meet face-to-face. [ 7 ]

  6. Triangular tiling - Wikipedia

    en.wikipedia.org/wiki/Triangular_tiling

    In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees.

  7. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t {3,6} (as a truncated triangular tiling).

  8. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    In tiling or tessellation problems, there are to be no gaps, nor overlaps. Many of the puzzles of this type involve packing rectangles or polyominoes into a larger rectangle or other square-like shape. There are significant theorems on tiling rectangles (and cuboids) in rectangles (cuboids) with no gaps or overlaps:

  9. Rhombille tiling - Wikipedia

    en.wikipedia.org/wiki/Rhombille_tiling

    In geometry, the rhombille tiling, [1] also known as tumbling blocks, [2] reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape are sometimes also called diamonds. Sets of three rhombi meet at their 120° angles, and sets ...

  1. Ads

    related to: shapes that will tessellate things worksheet answers grade