enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    In orbital mechanics, the equations of motion of planets are formulated as point masses located at the centers of mass (see Barycenter (astronomy) for details). The center of mass frame is an inertial frame in which the center of mass of a system is at rest with respect to the origin of the coordinate system.

  3. Barycenter (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Barycenter_(astronomy)

    In astronomy, the barycenter (or barycentre; from Ancient Greek βαρύς (barús) 'heavy' and κέντρον (kéntron) 'center') [1] is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object.

  4. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    The most prominent example of the classical two-body problem is the gravitational case (see also Kepler problem), arising in astronomy for predicting the orbits (or escapes from orbit) of objects such as satellites, planets, and stars. A two-point-particle model of such a system nearly always describes its behavior well enough to provide useful ...

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Einstein's equations can also be solved on a computer using sophisticated numerical methods. [1] [2] [3] Given sufficient computer power, such solutions can be more accurate than post-Newtonian solutions. However, such calculations are demanding because the equations must generally be solved in a four-dimensional space.

  6. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    The equation α + ⁠ η / r 3 ⁠ r = 0 is the fundamental differential equation for the two-body problem Bernoulli solved in 1734. Notice for this approach forces have to be determined first, then the equation of motion resolved. This differential equation has elliptic, or parabolic or hyperbolic solutions. [23] [24] [25]

  7. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities (or momenta) of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation. [1]

  8. Barycentric coordinate system - Wikipedia

    en.wikipedia.org/wiki/Barycentric_coordinate_system

    Barycentric coordinates are strongly related to Cartesian coordinates and, more generally, affine coordinates.For a space of dimension n, these coordinate systems are defined relative to a point O, the origin, whose coordinates are zero, and n points , …,, whose coordinates are zero except that of index i that equals one.

  9. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    The formula is dimensionless, describing a ratio true for all units of measure applied uniformly across the formula. If the numerical value a {\displaystyle \mathbf {a} } is measured in meters per second squared, then the numerical values v {\displaystyle v\,} will be in meters per second, r {\displaystyle r\,} in meters, and ω {\displaystyle ...