Search results
Results from the WOW.Com Content Network
[3] [4] The internal angle of an equilateral triangle are equal, 60°. [5] Because of these properties, the equilateral triangles are regular polygons. The cevians of an equilateral triangle are all equal in length, resulting in the median and angle bisector being equal in length, considering those lines as their altitude depending on the base ...
Convex equilateral pentagon dissected into 3 triangles, which helps to calculate the value of angle δ as a function of α and β. When a convex equilateral pentagon is dissected into triangles, two of them appear as isosceles (triangles in orange and blue) while the other one is more general (triangle in green).
Taking L to be the x-axis, the line integral between consecutive vertices (x i,y i) and (x i+1,y i+1) is given by the base times the mean height, namely (x i+1 − x i)(y i + y i+1)/2. The sign of the area is an overall indicator of the direction of traversal, with negative area indicating counterclockwise traversal.
For any interior point P, the sum of the lengths of the perpendiculars s + t + u equals the height of the equilateral triangle.. Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. [1]
The 12 face angles - there are three of them for each of the four faces of the tetrahedron. The 6 dihedral angles - associated to the six edges of the tetrahedron, since any two faces of the tetrahedron are connected by an edge. The 4 solid angles - associated to each point of the tetrahedron.
A side, the angle opposite to it and an angle adjacent to it (AAS). For all cases in the plane, at least one of the side lengths must be specified. If only the angles are given, the side lengths cannot be determined, because any similar triangle is a solution.
Given triangle sides b and c and angle γ there are sometimes two solutions for a. The theorem is used in solution of triangles , i.e., to find (see Figure 3): the third side of a triangle if two sides and the angle between them is known: c = a 2 + b 2 − 2 a b cos γ ; {\displaystyle c={\sqrt {a^{2}+b^{2}-2ab\cos \gamma }}\,;}
The angle included by the legs is called the vertex angle and the angles that have the base as one of their sides are called the base angles. [6] The vertex opposite the base is called the apex. [7] In the equilateral triangle case, since all sides are equal, any side can be called the base. [8]