enow.com Web Search

  1. Ads

    related to: euclidean geometry grade 11 theorems and definitions examples

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Since non-Euclidean geometry is provably relatively consistent with Euclidean geometry, the parallel postulate cannot be proved from the other postulates. In the 19th century, it was also realized that Euclid's ten axioms and common notions do not suffice to prove all of the theorems stated in the Elements. For example, Euclid assumed ...

  3. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics.

  4. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Intercept theorem (Euclidean geometry) Intersecting chords theorem (Euclidean geometry) Intersecting secants theorem (Euclidean geometry) Intersection theorem (projective geometry) Inverse eigenvalues theorem (linear algebra) Inverse function theorem (vector calculus) Ionescu-Tulcea theorem (probability theory) Isomorphism extension theorem ...

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  6. Tarski's axioms - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axioms

    Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity (i.e. is formulable as an elementary theory). As such, it does not require an underlying set theory. The only primitive objects of the system are "points" and the only primitive ...

  7. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described (although non-rigorously by modern standards) in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these.

  8. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive.

  9. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    Thus, in Euclidean geometry, the shortest distance between two points is a straight line. In spherical geometry , the shortest distance between two points is an arc of a great circle , but the triangle inequality holds provided the restriction is made that the distance between two points on a sphere is the length of a minor spherical line ...

  1. Ads

    related to: euclidean geometry grade 11 theorems and definitions examples