enow.com Web Search

  1. Including results for

    low bias variance tradeoff

Search results

  1. Results from the WOW.Com Content Network
  2. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Biasvariance_tradeoff

    In artificial neural networks, the variance increases and the bias decreases as the number of hidden units increase, [12] although this classical assumption has been the subject of recent debate. [4] Like in GLMs, regularization is typically applied. In k-nearest neighbor models, a high value of k leads to high bias and low variance (see below).

  3. Ensemble averaging (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Ensemble_averaging...

    This is known as the biasvariance tradeoff. Ensemble averaging creates a group of networks, each with low bias and high variance, and combines them to form a new network which should theoretically exhibit low bias and low variance. Hence, this can be thought of as a resolution of the biasvariance tradeoff. [4]

  4. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    Generally, there is a tradeoff between bias and variance. A learning algorithm with low bias must be "flexible" so that it can fit the data well. But if the learning algorithm is too flexible, it will fit each training data set differently, and hence have high variance.

  5. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    This is known as the biasvariance tradeoff. Keeping a function simple to avoid overfitting may introduce a bias in the resulting predictions, while allowing it to be more complex leads to overfitting and a higher variance in the predictions. It is impossible to minimize both simultaneously.

  6. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.

  7. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests are a way of averaging multiple deep decision trees, trained on different parts of the same training set, with the goal of reducing the variance. [3]: 587–588 This comes at the expense of a small increase in the bias and some loss of interpretability, but generally greatly boosts the performance in the final model.

  8. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    A sign of underfitting is that there is a high bias and low variance detected in the current model or algorithm used (the inverse of overfitting: low bias and high variance). This can be gathered from the Bias-variance tradeoff, which is the

  9. Occam's razor - Wikipedia

    en.wikipedia.org/wiki/Occam's_razor

    The biasvariance tradeoff is a framework that incorporates the Occam's razor principle in its balance between overfitting (associated with lower bias but higher variance) and underfitting (associated with lower variance but higher bias). [38]