Search results
Results from the WOW.Com Content Network
In supramolecular chemistry, [1] host–guest chemistry describes complexes that are composed of two or more molecules or ions that are held together in unique structural relationships by forces other than those of full covalent bonds. Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent ...
The polar sensitivity factor ρ* can be obtained by plotting the ratio of the measured reaction rates (k s) compared to the reference reaction versus the σ* values for the substituents. This plot will give a straight line with a slope equal to ρ*. Similar to the Hammett ρ value:
The reservoir contains the amount of material M under consideration, as defined by chemical, physical or biological properties. The source Q is the flux of material into the reservoir, and the sink S is the flux of material out of the reservoir. The budget is the check and balance of the sources and sinks affecting material turnover in a reservoir.
As core samples are the only evidence of the reservoir's formation rock structure, the Core analysis is the "ground truth" data measured at laboratory to comprehend the key petrophysical features of the in-situ reservoir. In the petroleum industry, rock samples are retrieved from the subsurface and measured by oil or service companies' core ...
Static molecular recognition is likened to the interaction between a key and a keyhole; it is a 1:1 type complexation reaction between a host molecule and a guest molecule to form a host–guest complex. To achieve advanced static molecular recognition, it is necessary to make recognition sites that are specific for guest molecules.
Flow through the pores in an oil reservoir has capillary number values in the order of 10 −6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity. [ 4 ] The capillary number plays a role in the dynamics of capillary flow ; in particular, it governs the dynamic contact angle of a flowing droplet at ...
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Symbol Definition Relation to SI units ångström: Å ≡ 1 × 10 −10 m: ≡ 0.1 nm astronomical unit: au ≡ 149 597 870 700 m ≈ Distance from Earth to Sun ≡ 149 597 870 700 m [1] attometre: am ≡ 1 × 10 −18 m: ≡ 1 × 10 −18 m: barleycorn (H) = 1 ⁄ 3 in (see note above about rounding) = 8.4 6 × 10 −3 m bohr, atomic unit of ...