Search results
Results from the WOW.Com Content Network
A larger Nusselt number corresponds to more active convection, with turbulent flow typically in the 100–1000 range. [2] A similar non-dimensional property is the Biot number, which concerns thermal conductivity for a solid body rather than a fluid. The mass transfer analogue of the Nusselt number is the Sherwood number.
In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .
h = convection heat transfer coefficient; G = mass flux of the fluid; ρ = density of the fluid; c p = specific heat of the fluid; u = velocity of the fluid; It can also be represented in terms of the fluid's Nusselt, Reynolds, and Prandtl numbers: = where Nu is the Nusselt number;
In cases where experimental results are used, one can assume these equations underlie the observed transport. At an interface, the boundary conditions for both equations are also similar. For heat transfer at an interface, the no-slip condition allows us to equate conduction with convection, thus equating Fourier's law and Newton's law of cooling:
The Sherwood number (Sh) (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the total mass transfer rate ( convection + diffusion) to the rate of diffusive mass transport, [ 1 ] and is named in honor of Thomas Kilgore Sherwood .
Name Standard symbol Definition Field of application Archimedes number: Ar = fluid mechanics (motion of fluids due to density differences) : Asakuma number: As = heat transfer (ratio of heat generation of microwave dielectric heating to thermal diffusion [6]
Convection cooling is sometimes said to be governed by "Newton's law of cooling." When the heat transfer coefficient is independent, or relatively independent, of the temperature difference between object and environment, Newton's law is followed. The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not ...
The Nusselt number is most useful in determining the convective heat transfer coefficient, whereas the Biot number is used in unsteady problems. This is a typical exam question. The " k {\displaystyle k} " in the Biot numer is of a solid, that in the Nusselt number of a fluid.