enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnitude (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(mathematics)

    By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.

  3. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Historically, vectors were introduced in geometry and physics (typically in mechanics) for quantities that have both a magnitude and a direction, such as displacements, forces and velocity. Such quantities are represented by geometric vectors in the same way as distances , masses and time are represented by real numbers .

  4. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    Since the notions of vector length and angle between vectors can be generalized to any n-dimensional inner product space, this is also true for the notions of orthogonal projection of a vector, projection of a vector onto another, and rejection of a vector from another. In some cases, the inner product coincides with the dot product.

  5. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. [1] A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings.

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    Illustration showing how to find the angle between vectors using the dot product Calculating bond angles of a symmetrical tetrahedral molecular geometry using a dot product. In Euclidean space, a Euclidean vector is a geometric object that possesses both a magnitude and a direction. A vector can be pictured as an arrow.

  8. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. Its eigenvectors are those vectors that are only stretched, with neither rotation nor shear.