Search results
Results from the WOW.Com Content Network
An idealized strike-slip fault runs in a straight line with a vertical dip and has only horizontal motion, thus there is no change in topography due to motion of the fault. In reality, as strike-slip faults become large and developed, their behavior changes and becomes more complex. A long strike-slip fault follows a staircase-like trajectory ...
Lateral strike-slip faults. Strike-slip faults occur when the blocks slide against each other laterally, parallel to the plane. The direction of the slip can be observed from either side of the fault, with the far block moving to the left indicating a left lateral slip, and the converse indicating a right lateral slip. See animation here [5]
Strike-slip faults with left-lateral motion are also known as sinistral faults and those with right-lateral motion as dextral faults. [18] Each is defined by the direction of movement of the ground as would be seen by an observer on the opposite side of the fault. A special class of strike-slip fault is the transform fault when it forms a plate ...
Schematic illustration of the two strike-slip fault types. The view is of the Earth's surface from above. In geology, the terms sinistral and dextral refer to the horizontal component of the movement of blocks on either side of a fault or the sense of movement within a shear zone. These are terms of relative direction, as the movement of the ...
A fault bend, or fault stepover, forms when individual segments of the fault overlap and link together. The type of structures which form along the strike-slip fault depend on the sense of slip relative to the sense of stepping. When a sinistral fault steps to the right or a dextral fault steps to the left, a restraining bend is formed. [2]
Rake is used to describe the direction of fault motion with respect to the strike (measured anticlockwise from the horizontal, up is positive; values between −180° and 180°): left-lateral strike slip: rake near 0° right-lateral strike slip: rake near 180° normal: rake near −90° reverse/thrust: rake near +90°
Diagram of fault geometry (in map view) that leads to transtension at the bend or step-over. Releasing bends are transtensional structures that form where the orientation of a strike-slip fault becomes oblique to the regional slip vector causing local extension (such as a right stepping bend on a right-lateral fault). [1]
Fault (geology)#Strike-slip faults: Active: 1989 Maquarie Isl. (8.2), 2008 Macquarie Island earthquake (M7.1) Mae Chan Fault: 120: Thailand and Laos: Sinstral: Active: 2007 Laos (M6.3) Magallanes–Fagnano Fault: South America: Transform: Main Boundary Thrust: 2000: Himalaya: Thrust: Active (although not uniformly) Main Central Thrust: 2200 ...