Search results
Results from the WOW.Com Content Network
familiar from quantum mechanics but interpreted in this context as coordinates of a quantum space or spacetime. These relations were proposed by Roger Penrose in his earliest spin network theory of space. It is a toy model of quantum gravity in 3 spacetime dimensions (not the physical 4) with a Euclidean (not the physical Minkowskian) signature.
On certain regions of spacetime (and possibly the entire spacetime) one can describe the points by a set of coordinates. In this case, the metric can be written down in terms of the coordinates, or more precisely, the coordinate one-forms and coordinates.
In theoretical physics, quantum field theory in curved spacetime (QFTCS) [1] is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy ...
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...
A graphic representation of Wheeler's calculations of what quantum reality may look like at the Planck length. Quantum foam (or spacetime foam, or spacetime bubble) is a theoretical quantum fluctuation of spacetime on very small scales due to quantum mechanics. The theory predicts that at this small scale, particles of matter and antimatter are ...
In physics, spacetime is any mathematical model that combines space and time into a single continuum. By doing so, physicists have significantly simplified a large number of physical theories, as well as described in a more uniform way the workings of the universe at both the supergalactic and subatomic levels.
The implication is that a quantum field theory on noncommutative spacetime can be interpreted as a low energy limit of the theory of open strings. Two papers, one by Sergio Doplicher , Klaus Fredenhagen and John Roberts [ 5 ] and the other by D. V. Ahluwalia, [ 6 ] set out another motivation for the possible noncommutativity of space-time.
The phenomenon of dimensional reduction has now been reported in a number of different approaches to quantum gravity. String theory, [2] causal dynamical triangulations, [3] renormalization group approaches, [4] noncommutative geometry, [5] loop quantum gravity [6] and Horava-Lifshitz gravity [7] all find that the dimensionality of spacetime appears to decrease from approximately 4 on large ...