Search results
Results from the WOW.Com Content Network
familiar from quantum mechanics but interpreted in this context as coordinates of a quantum space or spacetime. These relations were proposed by Roger Penrose in his earliest spin network theory of space. It is a toy model of quantum gravity in 3 spacetime dimensions (not the physical 4) with a Euclidean (not the physical Minkowskian) signature.
On certain regions of spacetime (and possibly the entire spacetime) one can describe the points by a set of coordinates. In this case, the metric can be written down in terms of the coordinates, or more precisely, the coordinate one-forms and coordinates.
A graphic representation of Wheeler's calculations of what quantum reality may look like at the Planck length. Quantum foam (or spacetime foam, or spacetime bubble) is a theoretical quantum fluctuation of spacetime on very small scales due to quantum mechanics. The theory predicts that at this small scale, particles of matter and antimatter are ...
In theoretical physics, quantum field theory in curved spacetime (QFTCS) [1] is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy ...
The implication is that a quantum field theory on noncommutative spacetime can be interpreted as a low energy limit of the theory of open strings. Two papers, one by Sergio Doplicher , Klaus Fredenhagen and John Roberts [ 5 ] and the other by D. V. Ahluwalia, [ 6 ] set out another motivation for the possible noncommutativity of space-time.
No spacetime is assumed a priori, but rather it is built up by the states of theory themselves – however scattering amplitudes are derived from -point functions (Correlation function) and these, formulated in conventional quantum field theory, are functions of points of a background spacetime. The relation between the background-independent ...
The theoretical study of time travel generally follows the laws of general relativity. Quantum mechanics requires physicists to solve equations describing how probabilities behave along closed timelike curves (CTCs), which are theoretical loops in spacetime that might make it possible to travel through time.
The phenomenon of dimensional reduction has now been reported in a number of different approaches to quantum gravity. String theory, [2] causal dynamical triangulations, [3] renormalization group approaches, [4] noncommutative geometry, [5] loop quantum gravity [6] and Horava-Lifshitz gravity [7] all find that the dimensionality of spacetime appears to decrease from approximately 4 on large ...