enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The name "parabola" is due to Apollonius, who discovered many properties of conic sections. It means "application", referring to "application of areas" concept, that has a connection with this curve, as Apollonius had proved. [1] The focus–directrix property of the parabola and other conic sections was mentioned in the works of Pappus.

  3. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  4. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    For central conics, both eigenvalues are non-zero and the classification of the conic sections can be obtained by examining them. [10] If λ 1 and λ 2 have the same algebraic sign, then Q is a real ellipse, imaginary ellipse or real point if K has the same sign, has the opposite sign or is zero, respectively.

  5. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    requiring a conic to pass through a point imposes a linear condition on the coordinates: for a fixed (,), the equation + + + + + = is a linear equation in (,,,,,); by dimension counting , five constraints (that the curve passes through five points) are necessary to specify a conic, as each constraint cuts the dimension of possibilities by 1 ...

  6. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  7. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    If this transformation is performed on each conic in an orthogonal net of confocal ellipses and hyperbolas, the limit is an orthogonal net of confocal parabolas facing opposite directions. Every parabola with focus at the origin and x-axis as its axis of symmetry is the locus of points satisfying the equation

  8. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...

  9. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.