Search results
Results from the WOW.Com Content Network
In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).
In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in the phase space.
In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in
A plot of () (left) and its phase line (right). In this case, a and c are both sinks and b is a source. In mathematics , a phase line is a diagram that shows the qualitative behaviour of an autonomous ordinary differential equation in a single variable, d y d x = f ( y ) {\displaystyle {\tfrac {dy}{dx}}=f(y)} .
Some sink, source or node are equilibrium points. 2-dimensional case refers to Phase plane. In mathematics, an autonomous system or autonomous differential equation is a system of ordinary differential equations which does not explicitly depend on the independent variable. When the variable is time, they are also called time-invariant systems.
van der Pol oscillator phase plot, with μ varying from 0.1 to 3.0. The green lines are the x-nullclines. The same oscillator phase plot, but with Liénard transform. The Van der Pol Oscillator simulated with the Brain Dynamics Toolbox [1] Evolution of the limit cycle in the phase plane.
It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .
The simplest phase diagrams are pressure–temperature diagrams of a single simple substance, such as water. The axes correspond to the pressure and temperature. The phase diagram shows, in pressure–temperature space, the lines of equilibrium or phase boundaries between the three phases of solid, liquid, and gas.