Search results
Results from the WOW.Com Content Network
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
They discovered that the mechanism that controlled the metabolic "switching" function was a two-part control mechanism on the lac operon. When lactose is present in the cell the enzyme β-galactosidase is produced to convert lactose into glucose or galactose. When lactose is absent in the cell the lac repressor inhibits the production of the ...
The inducer in the lac operon is allolactose. [2] If lactose is present in the medium, then a small amount of it will be converted to allolactose by a few molecules of β-galactosidase that are present in the cell. [3] Allolactose binds to the repressor and decreases the repressor's affinity for the operator site. [3]
Inducible systems - An inducible system is off unless there is the presence of some molecule (called an inducer) that allows for gene expression. The molecule is said to "induce expression". The manner by which this happens is dependent on the control mechanisms as well as differences between prokaryotic and eukaryotic cells.
When referring to a promoter some authors actually mean promoter + operator; i.e., the lac promoter is IPTG inducible, meaning that besides the lac promoter, the lac operon is also present. If the lac operator were not present the IPTG would not have an inducible effect. [citation needed] Another example is the Tac-Promoter system (Ptac ...
Genetic regulatory circuits (also referred to as transcriptional regulatory circuits) is a concept that evolved from the Operon Model discovered by François Jacob and Jacques Monod. [1] [2] [3] They are functional clusters of genes that impact each other's expression through inducible transcription factors and cis-regulatory elements. [4] [5]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.