Search results
Results from the WOW.Com Content Network
The first systematic effort to use transformations as the foundation of geometry was made by Felix Klein in the 19th century, under the name Erlangen programme. For nearly a century this approach remained confined to mathematics research circles.
Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. [ a ] The word isometry is derived from the Ancient Greek : ἴσος isos meaning "equal", and μέτρον metron meaning "measure".
Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important ...
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system.
In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. [ 2 ] [ 3 ] [ 4 ] Examples include linear transformations of vector spaces and geometric transformations , which include projective transformations , affine transformations , and ...
The transformation is a translation if and only if A is the identity matrix. The transformation is a rotation around some point if and only if A is a rotation matrix, meaning that it is orthogonal and ,,,, =
However, when a reflection is composed with a translation in any other direction, the composition of the two transformations is a glide reflection, which can be uniquely described as a reflection in a parallel hyperplane composed with a translation in a direction parallel to the hyperplane. A single glide is represented as frieze group p11g.