Ads
related to: tangent and secant lines meaning definition math terms geometry worksheetkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Common lines and line segments on a circle, including a secant. A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is ...
This leads to the definition of the slope of the tangent line to the graph as the limit of the difference quotients for the function f. This limit is the derivative of the function f at x = a, denoted f ′(a). Using derivatives, the equation of the tangent line can be stated as follows: = + ′ ().
The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.
The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change , the ratio of the instantaneous change in the dependent variable to that of the independent variable. [ 1 ]
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
A tangent line t to a circle C intersects the circle at a single point T. For comparison, secant lines intersect a circle at two points, whereas another line may not intersect a circle at all. This property of tangent lines is preserved under many geometrical transformations, such as scalings, rotation, translations, inversions, and map ...
Euclid's Elements defines a straight line as a "breadthless length" that "lies evenly with respect to the points on itself", and introduced several postulates as basic unprovable properties on which the rest of geometry was established. Euclidean line and Euclidean geometry are terms introduced to avoid confusion with generalizations introduced ...
Secant is a term in mathematics derived from the Latin secare ("to cut"). It may refer to: a secant line, in geometry; the secant variety, in algebraic geometry; secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciprocal) trigonometric function of the cosine
Ads
related to: tangent and secant lines meaning definition math terms geometry worksheetkutasoftware.com has been visited by 10K+ users in the past month