enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mott–Bethe formula - Wikipedia

    en.wikipedia.org/wiki/Mott–Bethe_formula

    The Mott–Bethe formula is an approximation used to calculate atomic electron scattering form factors, (,), from atomic X-ray scattering form factors, (,). [1] [2] [3] The formula was derived independently by Hans Bethe and Neville Mott both in 1930, [4] [5] and simply follows from applying the first Born approximation for the scattering of electrons via the Coulomb interaction together with ...

  3. Atomic form factor - Wikipedia

    en.wikipedia.org/wiki/Atomic_form_factor

    Since these orbitals are typically of a comparable size to the wavelength of the free neutrons, the resulting form factor resembles that of the X-ray form factor. However, this neutron-magnetic scattering is only from the outer electrons, rather than being heavily weighted by the core electrons, which is the case for X-ray scattering.

  4. F-factor (conversion factor) - Wikipedia

    en.wikipedia.org/wiki/F-factor_(conversion_factor)

    The two determinants of the F-factor are the effective atomic number (Z) of the material and the type of ionizing radiation being considered. Since the effective Z of air and soft tissue is approximately the same, the F-factor is approximately 1 for many x-ray imaging applications. However, bone has an F-factor of up to 4, due to its higher ...

  5. Neutron scattering length - Wikipedia

    en.wikipedia.org/wiki/Neutron_scattering_length

    This scattering length varies by isotope (and by element as the weighted arithmetic mean over the constituent isotopes) in a way that appears random, whereas the X-ray scattering length is just the product of atomic number and Thomson scattering length, thus monotonically increasing with atomic number. [1] [2]

  6. Mass attenuation coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_attenuation_coefficient

    Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).

  7. Electron capture - Wikipedia

    en.wikipedia.org/wiki/Electron_capture

    In nuclear physics, beta decay is a type of radioactive decay in which a beta ray (fast energetic electron or positron) and a neutrino are emitted from an atomic nucleus. Electron capture is sometimes called inverse beta decay , though this term usually refers to the interaction of an electron antineutrino with a proton.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. R-factor (crystallography) - Wikipedia

    en.wikipedia.org/wiki/R-factor_(crystallography)

    Small molecules (up to ca. 1000 atoms) usually form better-ordered crystals than large molecules, and thus it is possible to attain lower R-factors. In the Cambridge Structural Database of small-molecule structures, more than 95% of the 500,000+ crystals have an R-factor lower than 0.15, and 9.5% have an R-factor lower than 0.03.