Search results
Results from the WOW.Com Content Network
Nitric acid, with a pK value of around −1.7, behaves as a strong acid in aqueous solutions with a pH greater than 1. [23] At lower pH values it behaves as a weak acid. pK a values for strong acids have been estimated by theoretical means. [24] For example, the pK a value of aqueous HCl has been estimated as −9.3.
For example, the acid may be acetic acid and the salt may be sodium acetate. The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, K a of the acid, and the concentrations of the species in solution. [6]
The first (e.g., acetic acid or ammonium) have only one dissociable group, the second (e.g., carbonic acid, bicarbonate, glycine) have two dissociable groups and the third (e.g., phosphoric acid) have three dissociable groups. In the case of multiple pK values they are designated by indices: pK 1, pK 2, pK 3 and so on.
Phase behavior Triple point: 289.8 K (16.7 °C), ? Pa Critical point: 593 K (320 °C), 57.8 bar Eutectic point with water –26.7 °C Std enthalpy change
A weak acid may be defined as an acid with pK a greater than about −2. An acid with pK a = −2 would be 99 % dissociated at pH 0, that is, in a 1 M HCl solution. Any acid with a pK a less than about −2 is said to be a strong acid. Strong acids are said to be fully dissociated.
For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 / K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14 ), which certainly does not correspond to a strong base.
acetyl chloride SOCl 2 acetic acid (i) Li[AlH 4], ether (ii) H 3 O + ethanol Two typical organic reactions of acetic acid Acetic acid undergoes the typical chemical reactions of a carboxylic acid. Upon treatment with a standard base, it converts to metal acetate and water. With strong bases (e.g., organolithium reagents), it can be doubly deprotonated to give LiCH 2 COOLi. Reduction of acetic ...
The Brønsted equation gives information about a reaction mechanism. Reactions that have low values for proportionality constants α or β are considered to have a transition state closely resembling the reactant with little proton transfer. With a high value, proton transfer in the transition state is almost complete.