Search results
Results from the WOW.Com Content Network
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
Variance (the square of the standard deviation) – location-invariant but not linear in scale. Variance-to-mean ratio – mostly used for count data when the term coefficient of dispersion is used and when this ratio is dimensionless, as count data are themselves dimensionless, not otherwise. Some measures of dispersion have specialized purposes.
The red population has mean 100 and variance 100 (SD=10) while the blue population has mean 100 and variance 2500 (SD=50) where SD stands for Standard Deviation. In probability theory and statistics , variance is the expected value of the squared deviation from the mean of a random variable .
The standard deviation of an exponential distribution is equal to its mean, so its coefficient of variation is equal to 1. Distributions with CV < 1 (such as an Erlang distribution) are considered low-variance, while those with CV > 1 (such as a hyper-exponential distribution) are considered high-variance [citation needed].
If the considered function is the density of a normal distribution of the form = [()] where σ is the standard deviation and x 0 is the expected value, then the relationship between FWHM and the standard deviation is [1] = .
The instrument detection limit (IDL) is the analyte concentration that is required to produce a signal greater than three times the standard deviation of the noise level. This may be practically measured by analyzing 8 or more standards at the estimated IDL then calculating the standard deviation from the measured concentrations of those standards.
Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be
The standard deviation is the square root of the variance. When individual determinations of an age are not of equal significance, it is better to use a weighted mean to obtain an "average" age, as follows: ¯ = = =.