Search results
Results from the WOW.Com Content Network
For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ). Energy level diagram of electrons in hydrogen atom. There are emission lines from hydrogen that fall outside of these series, such as the 21 cm line.
A hydrogen atom with proton and electron spins aligned (top) undergoes a flip of the electron spin, resulting in emission of a photon with a 21 cm wavelength (bottom) The hydrogen line, 21 centimeter line, or H I line [a] is a spectral line that is created by a change in the energy state of solitary, electrically neutral hydrogen atoms.
The amount of energy needed to reverse the spin of the electron is equivalent to a photon at the frequency of 1.420 405 751 768 GHz, [1] which corresponds to the 21 cm line in the hydrogen spectrum. Hydrogen masers are very complex devices and sell for as much as US$235,000. [2] There are two types to be distinguished: active and passive.
Electromagnetic – the hyperfine transition of hydrogen, also known as the hydrogen line or 21 cm line 2.4 GHz: Electromagnetic – microwave ovens, wireless LANs and cordless phones (starting in 1998) 2.6–3.8 GHz: A common desktop CPU speed as of 2014 5.8 GHz: Electromagnetic – cordless telephone frequency introduced in 2003 10 10: 10 GHz
In principle, any emission line can be used to make intensity maps if it can be detected. Other emission lines that have been proposed as cosmological tracers include: Rotational transitions in molecules, such as carbon monoxide [13] Fine structure transitions from species such as ionized carbon [14] Lyman-alpha emission from hydrogen [15]
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series.It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state (n = 1), where n is the principal quantum number.
The version of the Rydberg formula that generated the Lyman series was: [2] = (= +) where n is a natural number greater than or equal to 2 (i.e., n = 2, 3, 4, .... Therefore, the lines seen in the image above are the wavelengths corresponding to n = 2 on the right, to n → ∞ on the left.
A spectral line may be observed either as an emission line or an absorption line. Which type of line is observed depends on the type of material and its temperature relative to another emission source. An absorption line is produced when photons from a hot, broad spectrum source pass through a cooler material.