enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Compact finite difference - Wikipedia

    en.wikipedia.org/wiki/Compact_finite_difference

    The classical Pade scheme for the first derivative at a cell with index (′) reads; ′ + ′ + + ′ = +. Where is the spacing between points with index , & +.The equation yields a fourth-order accurate solution for ′ when supplemented with suitable boundary conditions (typically periodic).

  3. Five-point stencil - Wikipedia

    en.wikipedia.org/wiki/Five-point_stencil

    An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".

  4. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  5. Cutting stock problem - Wikipedia

    en.wikipedia.org/wiki/Cutting_stock_problem

    Cutting-stock problems can be classified in several ways. [1] One way is the dimensionality of the cutting: the above example illustrates a one-dimensional (1D) problem; other industrial applications of 1D occur when cutting pipes, cables, and steel bars. Two-dimensional (2D) problems are encountered in furniture, clothing and glass production.

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  7. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  8. Godunov's scheme - Wikipedia

    en.wikipedia.org/wiki/Godunov's_scheme

    Obtain the solution for the local Riemann problem at the cell interfaces. This is the only physical step of the whole procedure. The discontinuities at the interfaces are resolved in a superposition of waves satisfying locally the conservation equations. The original Godunov method is based upon the exact solution of the Riemann problems.

  9. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    For example, it is possible to pack 147 rectangles of size (137,95) in a rectangle of size (1600,1230). Packing different rectangles in a rectangle : The problem of packing multiple rectangles of varying widths and heights in an enclosing rectangle of minimum area (but with no boundaries on the enclosing rectangle's width or height) has an ...