Search results
Results from the WOW.Com Content Network
The book was "essentially self-published" [1] by Wildberger through his publishing company Wild Egg. The formulas and theorems in the book are regarded as correct mathematics but the claims about practical or pedagogical superiority are primarily promoted by Wildberger himself and have received mixed reviews.
Having attending several of Norman Wildeberger's talks, the rationale behind rational trigonometry is that the concept of an angle belongs to a circle (ie, Euler's formula), and that the concept of spread is far more natural for a triangle (c.f. Thales' theorem). Angles and distance also break down in fields other than the real numbers, whereas ...
I just created this article, because Wildberger clearly needed an article, as he has made an important contribution to mathematics with his new subject known as "rational trigonometry."Dratman 01:56, 17 September 2011 (UTC) I think there have been changes since the Wikipedia:Articles for deletion/Norman J. Wildberger discussion. Wildberger is ...
Wildberger is a surname. Notable people with the surname include: Ed Wildberger, Missouri politician; Jacques Wildberger, Swiss composer; Norman J. Wildberger, mathematician known for rational trigonometry; Tina Wildberger, Hawaii politician
Metamath is a formal language and an associated computer program (a proof assistant) for archiving and verifying mathematical proofs. [2] Several databases of proved theorems have been developed using Metamath covering standard results in logic, set theory, number theory, algebra, topology and analysis, among others.
A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).
Illustration for a proof of the Erdős–Anning theorem. Given three non-collinear points A, B, C with integer distances from each other (here, the vertices of a 3–4–5 right triangle), the points whose distances to A and B differ by an integer lie on a system of hyperbolas and degenerate hyperbolas (blue), and symmetrically the points whose distances to B and C differ by an integer lie on ...
The theorem is named after Frank S. Beckman and Donald A. Quarles Jr., who published this result in 1953; it was later rediscovered by other authors and re-proved in multiple ways. Analogous theorems for rational subsets of Euclidean spaces, or for non-Euclidean geometry, are also known.