Search results
Results from the WOW.Com Content Network
The book was "essentially self-published" [1] by Wildberger through his publishing company Wild Egg. The formulas and theorems in the book are regarded as correct mathematics but the claims about practical or pedagogical superiority are primarily promoted by Wildberger himself and have received mixed reviews.
Having attending several of Norman Wildeberger's talks, the rationale behind rational trigonometry is that the concept of an angle belongs to a circle (ie, Euler's formula), and that the concept of spread is far more natural for a triangle (c.f. Thales' theorem). Angles and distance also break down in fields other than the real numbers, whereas ...
I just created this article, because Wildberger clearly needed an article, as he has made an important contribution to mathematics with his new subject known as "rational trigonometry."Dratman 01:56, 17 September 2011 (UTC) I think there have been changes since the Wikipedia:Articles for deletion/Norman J. Wildberger discussion. Wildberger is ...
Illustration for a proof of the Erdős–Anning theorem. Given three non-collinear points A, B, C with integer distances from each other (here, the vertices of a 3–4–5 right triangle), the points whose distances to A and B differ by an integer lie on a system of hyperbolas and degenerate hyperbolas (blue), and symmetrically the points whose distances to B and C differ by an integer lie on ...
Metamath is a formal language and an associated computer program (a proof assistant) for archiving and verifying mathematical proofs. [2] Several databases of proved theorems have been developed using Metamath covering standard results in logic, set theory, number theory, algebra, topology and analysis, among others.
The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom.Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields ...
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...
The theorem is named after Frank S. Beckman and Donald A. Quarles Jr., who published this result in 1953; it was later rediscovered by other authors and re-proved in multiple ways. Analogous theorems for rational subsets of Euclidean spaces, or for non-Euclidean geometry, are also known.