Search results
Results from the WOW.Com Content Network
Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of the heart .
Cardiac muscle tissue has autorhythmicity, the unique ability to initiate a cardiac action potential at a fixed rate – spreading the impulse rapidly from cell to cell to trigger the contraction of the entire heart. This autorhythmicity is still modulated by the endocrine and nervous systems. [1]
By contrast, skeletal muscle consists of multinucleated muscle fibers and exhibits no intercalated discs. Intercalated discs support synchronized contraction of cardiac tissue in a wave-like pattern so that the heart can work like a pump. [1]
The main function of striated muscle tissue is to create force and contract. These contractions in cardiac muscle will pump blood throughout the body. In skeletal muscle the contractions enable breathing, movement, and posture maintenance. [1] Contractions in cardiac muscle tissue are due to a myogenic response of the heart's pacemaker cells ...
[4] [5] Skeletal muscle cells and cardiac muscle cells both contain myofibrils and sarcomeres and form a striated muscle tissue. [6] Cardiac muscle cells form the cardiac muscle in the walls of the heart chambers, and have a single central nucleus. [7]
Their function is similar in many respects to neurons. [8] Cardiac muscle tissue has autorhythmicity, the unique ability to initiate a cardiac action potential at a fixed rate—spreading the impulse rapidly from cell to cell to trigger the contraction of the entire heart. [8] There are specific proteins expressed in cardiac muscle cells.
Only one tissue-specific isoform of TnI is described for cardiac muscle tissue (cTnI), whereas the existence of several cardiac specific isoforms of TnT (cTnT) are described in the literature. No cardiac specific isoforms are known for human TnC. TnC in human cardiac muscle tissue is presented by an isoform typical for slow skeletal muscle.
T-tubules (transverse tubules) are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells.With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.