enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    As the prototypical parabolic partial differential equation, the heat equation is among the most widely studied topics in pure mathematics, and its analysis is regarded as fundamental to the broader field of partial differential equations. The heat equation can also be considered on Riemannian manifolds, leading to many geometric applications.

  3. FTCS scheme - Wikipedia

    en.wikipedia.org/wiki/FTCS_scheme

    In numerical analysis, the FTCS (forward time-centered space) method is a finite difference method used for numerically solving the heat equation and similar parabolic partial differential equations. [1] It is a first-order method in time, explicit in time, and is conditionally stable when applied to the heat equation.

  4. Von Neumann stability analysis - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_stability_analysis

    The von Neumann method is based on the decomposition of the errors into Fourier series.To illustrate the procedure, consider the one-dimensional heat equation = defined on the spatial interval , with the notation = (,) where are the specific x values, and are the sequence of t values.

  5. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  6. Stefan problem - Wikipedia

    en.wikipedia.org/wiki/Stefan_problem

    In mathematics and its applications, particularly to phase transitions in matter, a Stefan problem is a particular kind of boundary value problem for a system of partial differential equations (PDE), in which the boundary between the phases can move with time.

  7. Porous medium equation - Wikipedia

    en.wikipedia.org/wiki/Porous_medium_equation

    The porous medium equation name originates from its use in describing the flow of an ideal gas in a homogeneous porous medium. [6] We require three equations to completely specify the medium's density , flow velocity field , and pressure : the continuity equation for conservation of mass; Darcy's law for flow in a porous medium; and the ideal gas equation of state.

  8. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.

  9. Duhamel's principle - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_principle

    Duhamel's principle is the result that the solution to an inhomogeneous, linear, partial differential equation can be solved by first finding the solution for a step input, and then superposing using Duhamel's integral. Suppose we have a constant coefficient, m-th order inhomogeneous ordinary differential equation.