enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variational inequality - Wikipedia

    en.wikipedia.org/wiki/Variational_inequality

    The first problem involving a variational inequality was the Signorini problem, posed by Antonio Signorini in 1959 and solved by Gaetano Fichera in 1963, according to the references (Antman 1983, pp. 282–284) and (Fichera 1995): the first papers of the theory were (Fichera 1963) and (Fichera 1964a), (Fichera 1964b).

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [l] is defined as the linear part of the change in the functional, and the second variation [m] is defined as the quadratic part. [22]

  4. Grönwall's inequality - Wikipedia

    en.wikipedia.org/wiki/Grönwall's_inequality

    Grönwall's inequality is an important tool to obtain various estimates in the theory of ordinary and stochastic differential equations. In particular, it provides a comparison theorem that can be used to prove uniqueness of a solution to the initial value problem ; see the Picard–Lindelöf theorem .

  5. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. Accordingly, the necessary condition of extremum ( functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf .

  6. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    The idea of solving minimization problems while restricting the values on the boundary can be further generalized by looking on function spaces where the trace is fixed only on a part of the boundary, and can be arbitrary on the rest. The next section presents theorems regarding weak sequential lower semi-continuity of functionals of the above ...

  7. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.

  8. Pinsker's inequality - Wikipedia

    en.wikipedia.org/wiki/Pinsker's_inequality

    In information theory, Pinsker's inequality, named after its inventor Mark Semenovich Pinsker, is an inequality that bounds the total variation distance (or statistical distance) in terms of the Kullback–Leibler divergence. The inequality is tight up to constant factors.

  9. Total variation - Wikipedia

    en.wikipedia.org/wiki/Total_variation

    In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure.For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation x ↦ f(x ...