Search results
Results from the WOW.Com Content Network
The problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal to the first explicit reasoning about what today is known as an expected value .
For highly correlated input data the one-in-10 rule (10 observations or labels needed per feature) may not be directly applicable due to the high correlation of the features: For images there is a rule of thumb that per class 1000 examples are needed. [11]
In more formal probability theory, a random variable is a function X defined from a sample space Ω to a measurable space called the state space. [ 2 ] [ a ] If an element in Ω is mapped to an element in state space by X , then that element in state space is a realization.
For both kinds of nodes, we first plot the points equi-distant on the upper half unit circle in blue. Then the blue points are projected down to the x-axis. The projected points, in red, are the Chebyshev nodes. In numerical analysis, Chebyshev nodes are a set of specific real algebraic numbers, used as nodes for polynomial interpolation.
The sentinel value is a form of in-band data that makes it possible to detect the end of the data when no out-of-band data (such as an explicit size indication) is provided. The value should be selected in such a way that it is guaranteed to be distinct from all legal data values since otherwise, the presence of such values would prematurely ...
A set of two or more random variables , …, is called uncorrelated if each pair of them is uncorrelated. This is equivalent to the requirement that the non-diagonal elements of the autocovariance matrix K X X {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {X} }} of the random vector X = [ X 1 …
If the linear model is applicable, a scatterplot of residuals plotted against the independent variable should be random about zero with no trend to the residuals. [5] If the data exhibit a trend, the regression model is likely incorrect; for example, the true function may be a quadratic or higher order polynomial.
The method can also be used on distributional limits of random variables. Furthermore, the estimate of the previous theorem can be refined by means of the so-called Paley–Zygmund inequality. Suppose that X n is a sequence of non-negative real-valued random variables which converge in law to a random variable X.