Search results
Results from the WOW.Com Content Network
Example graph that has a vertex cover comprising 2 vertices (bottom), but none with fewer. In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem.
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
Circuit satisfiability problem; Conjunctive Boolean query [3]: SR31 Cyclic ordering [36] Exact cover problem. Remains NP-complete for 3-sets. Solvable in polynomial time for 2-sets (this is a matching). [2] [3]: SP2 Finding the global minimum solution of a Hartree-Fock problem [37] Upward planarity testing [8] Hospitals-and-residents problem ...
There is often only a small difference between a problem in P and an NP-complete problem. For example, the 3-satisfiability problem, a restriction of the Boolean satisfiability problem, remains NP-complete, whereas the slightly more restricted 2-satisfiability problem is in P (specifically, it is NL-complete), but the slightly more general max ...
Example of a reduction from the boolean satisfiability problem (A ∨ B) ∧ (¬A ∨ ¬B ∨ ¬C) ∧ (¬A ∨ B ∨ C) to a vertex cover problem.The blue vertices form a minimum vertex cover, and the blue vertices in the gray oval correspond to a satisfying truth assignment for the original formula.
The W2SAT problem includes as a special case the vertex cover problem, of finding a set of k vertices that together touch all the edges of a given undirected graph. For any given instance of the vertex cover problem, one can construct an equivalent W2SAT problem with a variable for each vertex of a graph.
A simple example of an approximation algorithm is one for the minimum vertex cover problem, where the goal is to choose the smallest set of vertices such that every edge in the input graph contains at least one chosen vertex. One way to find a vertex cover is to repeat the following process: find an uncovered edge, add both its endpoints to the ...
The problem of deciding the satisfiability of a given conjunction of Horn clauses is called Horn-satisfiability, or HORN-SAT. It can be solved in polynomial time by a single step of the unit propagation algorithm, which produces the single minimal model of the set of Horn clauses (w.r.t. the set of literals assigned to TRUE).