Search results
Results from the WOW.Com Content Network
Benthos are the organisms that live in the benthic zone, and are different from those elsewhere in the water column; even within the benthic zone variations in such factors as light penetration, temperature and salinity give rise to distinct differences, delineated vertically, in the groups of organisms supported. [10]
These organisms can be used to indicate the presence, concentration, and effect of water pollutants in the aquatic environment. Some water contaminants—such as nutrients, chemicals from surface runoff, and metals [20] —settle in the sediment of river beds, where many benthos reside. Benthos are highly sensitive to contamination, so their ...
The benthic boundary layer (BBL) represents a few tens of meters of the water column directly above the sea floor [3] and constitutes an important zone of biological activity in the ocean. [4] It plays a vital role in the cycling of matter, and has been called the “endpoint” for sedimenting material, which fuels high metabolic rates for ...
The demersal zone is the part of the sea or ocean (or deep lake) consisting of the part of the water column near to (and significantly affected by) the seabed and the benthos. [1] The demersal zone is just above the benthic zone and forms a layer of the larger profundal zone. [citation needed]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.
The first, and simplest, is osmotic shock, which is achieved by submerging the sample in fresh water for a few seconds (this only works for marine samples). This will cause the organisms to release, after which they can be shaken free from the substrate and filtered out through a 45 μm mesh and immediately returned to fresh filtered seawater.
Ocean surfaces occupy 72% of the Earth's total surface. They can be divided into surfaces of the relatively shallow and nutrient rich coastal areas above the continental shelves (light blue), and surfaces of the more expansive and relatively deeper but nutrient poor ocean that lies beyond (deep blue).