Search results
Results from the WOW.Com Content Network
Dissolved oxygen levels required by various species in the Chesapeake Bay (US). In aquatic environments, oxygen saturation is a ratio of the concentration of "dissolved oxygen" (DO, O 2), to the maximum amount of oxygen that will dissolve in that water body, at the temperature and pressure which constitute stable equilibrium conditions.
The model describes how dissolved oxygen (DO) decreases in a river or stream along a certain distance by degradation of biochemical oxygen demand (BOD). The equation was derived by H. W. Streeter, a sanitary engineer, and Earle B. Phelps , a consultant for the U.S. Public Health Service , in 1925, based on field data from the Ohio River .
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
BOD test bottles at the laboratory of a wastewater treatment plant. Biochemical oxygen demand (also known as BOD or biological oxygen demand) is an analytical parameter representing the amount of dissolved oxygen (DO) consumed by aerobic bacteria growing on the organic material present in a water sample at a specific temperature over a specific time period.
Heat of vaporization of water from melting to critical temperature. Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C)—the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of ...
The temperature of a body of water directly affects the amount of dissolved oxygen it can hold. Following Henry's law, as water becomes warmer, oxygen becomes less soluble in it. This property leads to daily anoxic cycles on small geographic scales and seasonal cycles of anoxia on larger scales.
An aquatic system lacking dissolved oxygen (0% saturation) is termed anaerobic, reducing, or anoxic. In water, oxygen levels are approximately 7 ppm or 0.0007% in good quality water, but fluctuate. [5] Many organisms require hypoxic conditions. Oxygen is poisonous to anaerobic bacteria for example. [3]
In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor.