enow.com Web Search

  1. Ad

    related to: second derivative in parametric form

Search results

  1. Results from the WOW.Com Content Network
  2. Parametric derivative - Wikipedia

    en.wikipedia.org/wiki/Parametric_derivative

    In calculus, a parametric derivative is a derivative of a dependent variable with respect to another dependent variable that is taken when both variables depend on an independent third variable, usually thought of as "time" (that is, when the dependent variables are x and y and are given by parametric equations in t).

  3. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  4. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    The second fundamental form of a general parametric surface S is defined as follows. Let r = r(u 1,u 2) be a regular parametrization of a surface in R 3, where r is a smooth vector-valued function of two variables. It is common to denote the partial derivatives of r with respect to u α by r α, α = 1, 2.

  5. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    The second equation, called the Codazzi equation or Codazzi-Mainardi equation, states that the covariant derivative of the second fundamental form is fully symmetric. It is named for Gaspare Mainardi (1856) and Delfino Codazzi (1868–1869), who independently derived the result, [ 3 ] although it was discovered earlier by Karl Mikhailovich ...

  6. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    For a function f, if its second derivative f″(x) exists at x 0 and x 0 is an inflection point for f, then f″(x 0) = 0, but this condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third ...

  7. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    The various order of parametric continuity can be described as follows: [7]: zeroth derivative is continuous (curves are continuous): zeroth and first derivatives are continuous: zeroth, first and second derivatives are continuous

  8. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    The dependence on the second derivative is a consequence of the non-zero quadratic variation of the stochastic process, which broadly speaking means that the process can move up and down in a very rough way. This variant of the chain rule is not an example of a functor because the two functions being composed are of different types.

  9. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    The second fundamental form = + + is a quadratic form on the tangent plane to the surface that, together with the first fundamental form, determines the curvatures of curves on the surface. In the special case when ( u , v ) = ( x , y ) and the tangent plane to the surface at the given point is horizontal, the second fundamental form is ...

  1. Ad

    related to: second derivative in parametric form