Search results
Results from the WOW.Com Content Network
SPSS Statistics is a statistical software suite developed by IBM for data management, advanced analytics, multivariate analysis, business intelligence, and criminal investigation. Long produced by SPSS Inc. , it was acquired by IBM in 2009.
PSPP is a free software application for analysis of sampled data, intended as a free alternative for IBM SPSS Statistics. It has a graphical user interface [2] and conventional command-line interface. It is written in C and uses GNU Scientific Library for its mathematical routines. The name has "no official acronymic expansion". [3]
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
SPSS: A dialog box for Propensity Score Matching is available from the IBM SPSS Statistics menu (Data/Propensity Score Matching), and allows the user to set the match tolerance, randomize case order when drawing samples, prioritize exact matches, sample with or without replacement, set a random seed, and maximize performance by increasing ...
Others compare two or more paired or unpaired samples. Unpaired samples are also called independent samples. Paired samples are also called dependent. Finally, there are some statistical tests that perform analysis of relationship between multiple variables like regression. [1] Number of samples: The number of samples of data.
Overabundance of already collected data became an issue only in the "Big Data" era, and the reasons to use undersampling are mainly practical and related to resource costs. Specifically, while one needs a suitably large sample size to draw valid statistical conclusions, the data must be cleaned before it can be used. Cleansing typically ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Meta Analysis: Synthesise evidence across multiple studies. Includes techniques for fixed and random effects analysis, fixed and mixed effects meta-regression, forest and funnel plots, tests for funnel plot asymmetry, trim-and-fill and fail-safe N analysis. Network: Explore the connections between variables organised as a network. Network ...