Search results
Results from the WOW.Com Content Network
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]
Two random variables and are conditionally independent given a random variable if they are independent given σ(W): the σ-algebra generated by . This is commonly written: This is commonly written: X ⊥ ⊥ Y ∣ W {\displaystyle X\perp \!\!\!\perp Y\mid W} or
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product = is a product distribution.
When two or more random variables are defined on a probability space, it is useful to describe how they vary together; that is, it is useful to measure the relationship between the variables. A common measure of the relationship between two random variables is the covariance.
In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. [1] Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent.
Two random variables, X and Y, are said to be independent if any event defined in terms of X is independent of any event defined in terms of Y. Formally, they generate independent σ-algebras, where two σ-algebras G and H, which are subsets of F are said to be independent if any element of G is independent of any element of H.
The probability distribution of the sum of two independent random variables is the convolution of each of their distributions. Probability distributions are not a vector space —they are not closed under linear combinations , as these do not preserve non-negativity or total integral 1—but they are closed under convex combination , thus ...