Search results
Results from the WOW.Com Content Network
The alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are the second most reactive metals in the periodic table, and, like the Group 1 metals, have increasing reactivity with increasing numbers of energy levels. Beryllium (Be) is the only alkaline earth metal that does not react with water or steam, even if the metal is heated red hot. [9]
In conventional water-cooled designs, a significant amount of effort is needed to ensure that the materials making up the reactor do not dissolve or corrode into the water. Many common low-corrosion materials are not suitable for reactor use because they are not strong enough to withstand the high pressures being used, or are too easily ...
The driving force that causes metals to corrode is a consequence of their temporary existence in metallic form. To produce metals starting from naturally occurring minerals and ores, it is necessary to provide a certain amount of energy, e.g. Iron ore in a blast furnace.
Sodium and NaK (a eutectic sodium-potassium alloy) do not corrode steel to any significant degree and are compatible with many nuclear fuels, allowing for a wide choice of structural materials. NaK was used as the coolant in the first breeder reactor prototype, the Experimental Breeder Reactor-1 , in 1951.
The solid form has a hexagonal crystalline structure and is soft and easily crushed. Hydrogen is an insulator in all of its forms. It has a high ionisation energy (1312.0 kJ/mol), moderate electron affinity (73 kJ/mol), and moderate electronegativity (2.2). Hydrogen is a poor oxidising agent (H 2 + 2e − → 2H – = –2.25 V at pH 0). Its ...
In metallurgy, non-ferrous metals are metals or alloys that do not contain iron (allotropes of iron, ferrite, and so on) in appreciable amounts.. Generally more costly than ferrous metals, non-ferrous metals are used because of desirable properties such as low weight (e.g. aluminium), higher conductivity (e.g. copper), [1] non-magnetic properties or resistance to corrosion (e.g. zinc). [2]
Ferric iodide, a black solid, is not stable in ordinary conditions, but can be prepared through the reaction of iron pentacarbonyl with iodine and carbon monoxide in the presence of hexane and light at the temperature of −20 °C, with oxygen and water excluded. [14] Complexes of ferric iodide with some soft bases are known to be stable compounds.
Hydrogen embrittles a variety of metals including steel, [19] [20] aluminium (at high temperatures only [21]), and titanium. [22] Austempered iron is also susceptible, though austempered steel (and possibly other austempered metals) displays increased resistance to hydrogen embrittlement. [23]