enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    Rotational frequency, also known as rotational speed or rate of rotation (symbols ν, lowercase Greek nu, and also n), is the frequency of rotation of an object around an axis. Its SI unit is the reciprocal seconds (s −1 ); other common units of measurement include the hertz (Hz), cycles per second (cps), and revolutions per minute (rpm).

  3. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.

  4. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.

  5. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is

  6. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Figure 1: Velocity v and acceleration a in uniform circular motion at angular rate ω; the speed is constant, but the velocity is always tangential to the orbit; the acceleration has constant magnitude, but always points toward the center of rotation. Figure 2: The velocity vectors at time t and time t + dt are moved from the orbit on the left ...

  7. Tangential speed - Wikipedia

    en.wikipedia.org/wiki/Tangential_speed

    (Angular speed and angular velocity are related to the rotational speed and velocity by a factor of 2 π, the number of radians turned in a full rotation.) Tangential speed and rotational speed are related: the greater the "RPMs", the larger the speed in metres per second. Tangential speed is directly proportional to rotational speed at any ...

  8. Rotating spheres - Wikipedia

    en.wikipedia.org/wiki/Rotating_spheres

    An interpretation that avoids this conflict is to say that the rotating spheres experiment does not really define rotation relative to anything in particular (for example, absolute space or fixed stars); rather the experiment is an operational definition of what is meant by the motion called absolute rotation. [2]

  9. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    The graphs below show the angle domain equations for a constant rod length (6.0") and various values of half stroke (1.8", 2.0", 2.2"). Note in the graphs that L is rod length l {\displaystyle l} and R is half stroke. r {\displaystyle r} .