enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inhibitory postsynaptic potential - Wikipedia

    en.wikipedia.org/wiki/Inhibitory_postsynaptic...

    An inhibitory postsynaptic potential (IPSP) is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate an action potential. [1] The opposite of an inhibitory postsynaptic potential is an excitatory postsynaptic potential (EPSP), which is a synaptic potential that makes a postsynaptic neuron more likely to generate an action potential.

  3. Synaptic potential - Wikipedia

    en.wikipedia.org/wiki/Synaptic_potential

    Inhibitory postsynaptic potentials (IPSPs) hyperpolarize the membrane and move the potential farther away from the threshold, decreasing the likelihood of an action potential occurring. [2] The Excitatory Post Synaptic potential is most likely going to be carried out by the neurotransmitters glutamate and acetylcholine, while the Inhibitory ...

  4. Postsynaptic potential - Wikipedia

    en.wikipedia.org/wiki/Postsynaptic_potential

    Multiple inhibitory inputs combine and deepen hyperpolarization of the membrane (more negative). If the cell is receiving both inhibitory and excitatory postsynaptic potentials, they can cancel each other out, or one can be stronger than the other, and the membrane potential will change by the difference between them.

  5. Graded potential - Wikipedia

    en.wikipedia.org/wiki/Graded_potential

    Graded potentials that make the membrane potential more negative, and make the postsynaptic cell less likely to have an action potential, are called inhibitory post synaptic potentials (IPSPs). Hyperpolarization of membranes is caused by influx of Cl − or efflux of K +. As with EPSPs, the amplitude of the IPSP is directly proportional to the ...

  6. Summation (neurophysiology) - Wikipedia

    en.wikipedia.org/wiki/Summation_(neurophysiology)

    Summation of excitatory postsynaptic potentials increases the probability that the potential will reach the threshold potential and generate an action potential, whereas summation of inhibitory postsynaptic potentials can prevent the cell from achieving an action potential. The closer the dendritic input is to the axon hillock, the more the ...

  7. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    When an action potential arrives at the end of the pre-synaptic axon (top), it causes the release of neurotransmitter molecules that open ion channels in the post-synaptic neuron (bottom). The combined excitatory and inhibitory postsynaptic potentials of such inputs can begin a new action potential in the post-synaptic neuron.

  8. Excitatory synapse - Wikipedia

    en.wikipedia.org/wiki/Excitatory_synapse

    These electrical signals may be excitatory or inhibitory, and, if the total of excitatory influences exceeds that of the inhibitory influences, the neuron will generate a new action potential at its axon hillock, thus transmitting the information to yet another cell. [1] This phenomenon is known as an excitatory postsynaptic potential (EPSP).

  9. Chemical synapse - Wikipedia

    en.wikipedia.org/wiki/Chemical_synapse

    The resulting change in voltage is called a postsynaptic potential. In general, the result is excitatory in the case of depolarizing currents, and inhibitory in the case of hyperpolarizing currents. Whether a synapse is excitatory or inhibitory depends on what type(s) of ion channel conduct the postsynaptic current(s), which in turn is a ...