Search results
Results from the WOW.Com Content Network
A well-known counterexample is the absolute value function f(x) = |x|, which is not differentiable at x = 0, but is symmetrically differentiable here with symmetric derivative 0. For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient.
Similarly, if the exponent of y is always even in the equation of the curve then the x-axis is an axis of symmetry for the curve. If the sum of the degrees of x and y in each term is always even or always odd, then the curve is symmetric about the origin and the origin is called a center of the curve. Determine any bounds on the values of x and y.
The symmetry may be broken if the function fails to have differentiable partial derivatives, which is possible if Clairaut's theorem is not satisfied (the second partial derivatives are not continuous). The function f(x, y), as shown in equation , does not have symmetric second derivatives at its origin.
The most general power rule is the functional power rule: for any functions and , ′ = () ′ = (′ + ′ ), wherever both sides are well defined. Special cases: If f ( x ) = x a {\textstyle f(x)=x^{a}} , then f ′ ( x ) = a x a − 1 {\textstyle f'(x)=ax^{a-1}} when a {\textstyle a} is any nonzero real number and x {\textstyle x} is ...
In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.
In linear algebra, the n-th symmetric power of a vector space V is the vector subspace of the symmetric algebra of V consisting of degree-n elements (here the product is a tensor product). In algebraic topology , the n -th symmetric power of a topological space X is the quotient space X n / S n {\displaystyle X^{n}/{\mathfrak {S}}_{n}} , as in ...
Where ẑ is the axis of symmetry and θ is the angle between the position of the observer and the ẑ axis (the zenith angle), the solution for the potential will be (,) = = (+ (+)) (). A l and B l are to be determined according to the boundary condition of each problem.
The point E is an arbitrary point on the parabola. The focus is F, the vertex is A (the origin), and the line FA is the axis of symmetry. The line EC is parallel to the axis of symmetry, intersects the x axis at D and intersects the directrix at C. The point B is the midpoint of the line segment FC.