enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .

  3. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    Fibonacci instead would write the same fraction to the left, i.e., . Fibonacci used a composite fraction notation in which a sequence of numerators and denominators shared the same fraction bar; each such term represented an additional fraction of the given numerator divided by the product of all the denominators below and to the right of it.

  4. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.

  5. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.

  6. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...

  7. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    Plot of the first 10,000 Pisano periods. In number theory, the nth Pisano period, written as π (n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats.

  8. Wythoff array - Wikipedia

    en.wikipedia.org/wiki/Wythoff_array

    In mathematics, the Wythoff array is an infinite matrix of positive integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.

  9. Young–Fibonacci lattice - Wikipedia

    en.wikipedia.org/wiki/Young–Fibonacci_lattice

    A digit sequence with rank r may be formed either by adding the digit 2 to a sequence with rank r − 2, or by adding the digit 1 to a sequence with rank r − 1.If f is the function that maps r to the number of different digit sequences of that rank, therefore, f satisfies the recurrence relation f (r) = f (r − 2) + f (r − 1) defining the Fibonacci numbers, but with slightly different ...