Search results
Results from the WOW.Com Content Network
A relatively simple proof of the theorem was found by Bruce Kleiner. [5] Later, Terence Tao and Yehuda Shalom modified Kleiner's proof to make an essentially elementary proof as well as a version of the theorem with explicit bounds. [6] [7] Gromov's theorem also follows from the classification of approximate groups obtained by Breuillard, Green ...
The non-squeezing theorem, also called Gromov's non-squeezing theorem, is one of the most important theorems in symplectic geometry. [1] It was first proven in 1985 by Mikhail Gromov. [2] The theorem states that one cannot embed a ball into a cylinder via a symplectic map unless the radius of the ball is less than or equal to the radius of the ...
Gromov's theorem may mean one of a number of results of Mikhail Gromov: One of Gromov's compactness theorems: Gromov's compactness theorem (geometry) in Riemannian geometry; Gromov's compactness theorem (topology) in symplectic topology; Gromov's Betti number theorem Gromov–Ruh theorem on almost flat manifolds
The Tits alternative is an important ingredient [2] in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result for linear groups (it reduces it to the case of solvable groups, which can be dealt with by elementary means).
This fact is a special case of the general theorem of Hyman Bass and Yves Guivarch that is discussed in the article on Gromov's theorem. The lamplighter group has an exponential growth. The existence of groups with intermediate growth, i.e. subexponential but not polynomial was open for many years.
The role of this theorem in the theory of Gromov–Hausdorff convergence may be considered as analogous to the role of the Arzelà–Ascoli theorem in the theory of uniform convergence. [2] Gromov first formally introduced it in his 1981 resolution of the Milnor–Wolf conjecture in the field of geometric group theory , where he applied it to ...
Gromov used this theory to prove a non-squeezing theorem concerning symplectic embeddings of spheres into cylinders. Gromov showed that certain moduli spaces of pseudoholomorphic curves (satisfying additional specified conditions) are compact , and described the way in which pseudoholomorphic curves can degenerate when only finite energy is ...
Following ideas of Edward Witten, Gromov's work is also fundamental for Gromov-Witten theory, which is a widely studied topic reaching into string theory, algebraic geometry, and symplectic geometry. [39] [40] [41] From a different perspective, Gromov's work was also inspirational for much of Andreas Floer's work. [42]