Search results
Results from the WOW.Com Content Network
Maleimide-mediated methodologies are among the most used in bioconjugation. [5] [6] Due to fast reactions and high selectivity towards cysteine residues in proteins, a large variety of maleimide heterobifunctional reagents are used for the preparation of targeted therapeutics, assemblies for studying proteins in their biological context, protein-based microarrays, or proteins immobilisation. [7]
Reaction with thiols occur in the pH range 6.5–7.5, NEM may react with amines or undergo hydrolysis at a more alkaline pH. NEM has been widely used to probe the functional role of thiol groups in enzymology. NEM is an irreversible inhibitor of all cysteine peptidases, with alkylation occurring at the active site thiol group (see schematic ...
Succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) is a heterobifunctional amine-to-sulfhydryl crosslinker, which contains two reactive groups at opposite ends: N-hydroxysuccinimide-ester and maleimide, reactive with amines and thiols respectively.
In organic chemistry, a thiol (/ ˈ θ aɪ ɒ l /; [1] from Ancient Greek θεῖον (theion) 'sulfur' [2]), or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a ...
The following step is to add a chemical that can be an anchor between the lipid and the thiol group. Some examples of molecules that are capable of being this anchor are maleimide, iodoacetyl groups or 2-pyridyldithiol groups. [6] Ultimately, these steps create an antibody-enzyme conjugate that has been formulated using a thiol group. [6]
This article about an organic compound is a stub. You can help Wikipedia by expanding it.
In organosulfur chemistry, the thiol-ene reaction (also alkene hydrothiolation) is an organic reaction between a thiol (R−SH) and an alkene (R 2 C=CR 2) to form a thioether (R−S−R'). This reaction was first reported in 1905, [ 1 ] but it gained prominence in the late 1990s and early 2000s for its feasibility and wide range of applications.
In organic chemistry, an imide is a functional group consisting of two acyl groups bound to nitrogen. [1] The compounds are structurally related to acid anhydrides, although imides are more resistant to hydrolysis. In terms of commercial applications, imides are best known as components of high-strength polymers, called polyimides.