enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    Any series of 4 distinct points can be converted to a cubic Bézier curve that goes through all 4 points in order. Given the starting and ending point of some cubic Bézier curve, and the points along the curve corresponding to t = 1/3 and t = 2/3, the control points for the original Bézier curve can be recovered. [9]

  3. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    The following JavaScript function applies De Casteljau's algorithm to an array of control points or poles as originally named by De Casteljau to reduce them one by one until reaching a point in the curve for a given t between 0 for the first point of the curve and 1 for the last one

  4. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...

  5. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...

  6. Paul de Casteljau - Wikipedia

    en.wikipedia.org/wiki/Paul_de_Casteljau

    Paul de Casteljau (19 November 1930 – 24 March 2022) was a French physicist and mathematician. In 1959, while working at Citroën, he developed an algorithm for evaluating calculations on a certain family of curves, which would later be formalized and popularized by engineer Pierre Bézier, leading to the curves widely known as Bézier curves.

  7. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    The points in the patch corresponding to the corners of the deformed unit square coincide with four of the control points. However, a Bézier surface does not generally pass through its other control points. Generally, the most common use of Bézier surfaces is as nets of bicubic patches (where m = n = 3). The geometry of a single bicubic patch ...

  8. Control point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Control_point_(mathematics)

    For Bézier curves, it has become customary to refer to the ⁠ ⁠-vectors ⁠ ⁠ in a parametric representation of a curve or surface in ⁠ ⁠-space as control points, while the scalar-valued functions ⁠ ⁠, defined over the relevant parameter domain, are the corresponding weight or blending functions.

  9. Composite Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Composite_Bézier_curve

    Béziergon – The red béziergon passes through the blue vertices, the green points are control points that determine the shape of the connecting Bézier curves In geometric modelling and in computer graphics , a composite Bézier curve or Bézier spline is a spline made out of Bézier curves that is at least C 0 {\displaystyle C^{0}} continuous .