enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form: where is the mass and is the speed (magnitude of the velocity) of the body. In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules.

  3. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...

  4. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The energy entering through A 1 is the sum of the kinetic energy entering, the energy entering in the form of potential gravitational energy of the fluid, the fluid thermodynamic internal energy per unit of mass (ε 1) entering, and the energy entering in the form of mechanical p dV work: = (+ + +) where Ψ = gz is a force potential due to the ...

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Without friction to dissipate a body's energy into heat, the body's energy will trade between potential and (non-thermal) kinetic forms while the total amount remains constant. Any gain of kinetic energy, which occurs when the net force on the body accelerates it to a higher speed, must be accompanied by a loss of potential energy.

  6. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    By conservation of energy, assuming the datum is defined at the equilibrium position, when the spring reaches its maximal potential energy, the kinetic energy of the mass is zero. When the spring is released, it tries to return to equilibrium, and all its potential energy converts to kinetic energy of the mass.

  7. Thermodynamic potential - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_potential

    A thermodynamic potential (or more accurately, a thermodynamic potential energy) [1][2] is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings. The concept of thermodynamic potentials was ...

  8. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    Gravitational energy or gravitational potential energy is the potential energy a massive object has due to its position in a gravitational field. It is the mechanical work done by the gravitational force to bring the mass from a chosen reference point (often an "infinite distance" from the mass generating the field) to some other point in the ...

  9. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U: Wherever the force is zero, its potential energy is defined to be zero as well. Whenever the force does work, potential energy is lost.