enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.

  3. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  4. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...

  5. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).

  6. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    Algebraic operations can be done readily on the power series representation; for instance, Euler's formula follows from Taylor series expansions for trigonometric and exponential functions. This result is of fundamental importance in such fields as harmonic analysis.

  7. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  8. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    The convergence criteria of the power series then apply, requiring ‖ ‖ to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.

  9. Lagrange reversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_reversion_theorem

    In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions. Let v be a function of x and y in terms of another function f such that = + Then for any function g, for small enough y: = + =!