enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Color vision - Wikipedia

    en.wikipedia.org/wiki/Color_vision

    The RGB color model, therefore, is a convenient means for representing color but is not directly based on the types of cones in the human eye. The peak response of human cone cells varies, even among individuals with so-called normal color vision; [8] in some non-human species this polymorphic variation is even greater, and it may well be adaptive.

  3. Spectral sensitivity - Wikipedia

    en.wikipedia.org/wiki/Spectral_sensitivity

    Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience, spectral sensitivity is used to describe the different characteristics of the photopigments in the rod cells and cone cells in the retina of the eye.

  4. Luminous efficiency function - Wikipedia

    en.wikipedia.org/wiki/Luminous_efficiency_function

    Color blindness changes the sensitivity of the eye as a function of wavelength. For people with protanopia, the peak of the eye's response is shifted toward the short-wave part of the spectrum (approximately 540 nm), while for people with deuteranopia, there is a slight shift in the peak of the spectrum, to about 560 nm. [17]

  5. LMS color space - Wikipedia

    en.wikipedia.org/wiki/LMS_color_space

    LMS (long, medium, short), is a color space which represents the response of the three types of cones of the human eye, named for their responsivity (sensitivity) peaks at long, medium, and short wavelengths. The numerical range is generally not specified, except that the lower end is generally bounded by zero.

  6. Cone cell - Wikipedia

    en.wikipedia.org/wiki/Cone_cell

    There are about six to seven million cones in a human eye (vs ~92 million rods), with the highest concentration being towards the macula. [1] Cones are less sensitive to light than the rod cells in the retina (which support vision at low light levels), but allow the perception of color.

  7. CIE 1931 color space - Wikipedia

    en.wikipedia.org/wiki/CIE_1931_color_space

    A comparison between a typical normalized M cone's spectral sensitivity and the CIE 1931 luminosity function for a standard observer in photopic vision. In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space).

  8. Photoreceptor cell - Wikipedia

    en.wikipedia.org/wiki/Photoreceptor_cell

    Illustration of the distribution of cone cells in the fovea of an individual with normal color vision (left), and a color blind (protanopic) retina. Note that the center of the fovea holds very few blue-sensitive cones. Distribution of rods and cones along a line passing through the fovea and the blind spot of a human eye [7]

  9. Photopic vision - Wikipedia

    en.wikipedia.org/wiki/Photopic_vision

    The human eye uses three types of cones to sense light in three bands of color. The biological pigments of the cones have maximum absorption values at wavelengths of about 420 nm (blue), 534 nm (bluish-green), and 564 nm (yellowish-green). Their sensitivity ranges overlap to provide vision throughout the visible spectrum.