Search results
Results from the WOW.Com Content Network
The equation defining a plane curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of φ . The resulting curve then consists of points of the form ( r ( φ ), φ ) and can be regarded as the graph of the polar function r .
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
Equivalently, in polar coordinates (r, θ) it can be described by the equation = with real number b. Changing the parameter b controls the distance between loops. From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle θ as time elapses.
1.2 Cartesian coordinates. ... by a straightforward application of the polar formula, the strophoid is given parametrically by: ... The polar equations of the ...
The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve:
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where . ρ is the length of the vector projected onto the xy-plane,; φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π),
The equation (up to translation and rotation) of a limaçon in polar coordinates has the form r = b + a cos θ . {\displaystyle r=b+a\cos \theta .} This can be converted to Cartesian coordinates by multiplying by r (thus introducing a point at the origin which in some cases is spurious), and substituting r 2 = x 2 + y 2 {\displaystyle r^{2 ...