enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    In predictive analytics, a table of confusion (sometimes also called a confusion matrix) is a table with two rows and two columns that reports the number of true positives, false negatives, false positives, and true negatives. This allows more detailed analysis than simply observing the proportion of correct classifications (accuracy).

  3. Receiver operating characteristic - Wikipedia

    en.wikipedia.org/wiki/Receiver_operating...

    A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the performance of a binary classifier model (can be used for multi class classification as well) at varying threshold values. The ROC curve is the plot of the true positive rate (TPR) against the false positive rate (FPR) at each threshold setting.

  4. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    Information retrieval systems, such as databases and web search engines, are evaluated by many different metrics, some of which are derived from the confusion matrix, which divides results into true positives (documents correctly retrieved), true negatives (documents correctly not retrieved), false positives (documents incorrectly retrieved ...

  5. Total operating characteristic - Wikipedia

    en.wikipedia.org/wiki/Total_operating_characteristic

    Total operating characteristic. The total operating characteristic (TOC) is a statistical method to compare a Boolean variable versus a rank variable. TOC can measure the ability of an index variable to diagnose either presence or absence of a characteristic. The diagnosis of presence or absence depends on whether the value of the index is ...

  6. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  7. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    Precision and recall. In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the ...

  8. False positive rate - Wikipedia

    en.wikipedia.org/wiki/False_positive_rate

    The false positive rate is = +. where is the number of false positives, is the number of true negatives and = + is the total number of ground truth negatives.. The level of significance that is used to test each hypothesis is set based on the form of inference (simultaneous inference vs. selective inference) and its supporting criteria (for example FWER or FDR), that were pre-determined by the ...

  9. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    This statistics -related article is a stub. You can help Wikipedia by expanding it.